A Parallel Metrization Theorem

Taras Banakh

(Lviv and Kielce)

Hejnice, 29 January 2018

T.Banakh A Parallel Metrization Theorem

The question concerns parallel sets in metric spaces.

Definition

Two non-empty sets A, B in a metric space (X, d) are called *parallel* if

d(a,B) = d(A,B) = d(A,b) for any $a \in A$ and $b \in B$.

Here $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$ and $d(x, B) = d(B, x) := d(\{x\}, B)$ for $x \in X$.

The question concerns parallel sets in metric spaces.

Definition

Two non-empty sets A, B in a metric space (X, d) are called *parallel* if

d(a,B) = d(A,B) = d(A,b) for any $a \in A$ and $b \in B$.

Here $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$ and $d(x, B) = d(B, x) := d(\{x\}, B)$ for $x \in X$.

The question concerns parallel sets in metric spaces.

Definition

Two non-empty sets A, B in a metric space (X, d) are called *parallel* if

$$d(a,B) = d(A,B) = d(A,b)$$
 for any $a \in A$ and $b \in B$.

Here $d(A, B) = \inf \{ d(a, b) : a \in A, b \in B \}$ and $d(x, B) = d(B, x) := d(\{x\}, B)$ for $x \in X$.

The question concerns parallel sets in metric spaces.

Definition

Two non-empty sets A, B in a metric space (X, d) are called *parallel* if

$$d(a,B) = d(A,B) = d(A,b)$$
 for any $a \in A$ and $b \in B$.

Here $d(A, B) = \inf \{ d(a, b) : a \in A, b \in B \}$ and $d(x, B) = d(B, x) := d(\{x\}, B)$ for $x \in X$.

Definition

Let C be a family of closed subsets of a topological space X. A metric d on X is called *C*-parallel if any two sets $A, B \in C$ are parallel with respect to the metric d.

A family C of subsets of X is called a *compact cover* of X if $X = \bigcup C$ and each set $C \in C$ is compact.

Problem (MO)

For which compact covers C of a topological space X the topology of X is generated by a C-parallel metric?

Example

Definition

Let C be a family of closed subsets of a topological space X. A metric d on X is called *C*-parallel if any two sets $A, B \in C$ are parallel with respect to the metric d.

A family C of subsets of X is called a *compact cover* of X if $X = \bigcup C$ and each set $C \in C$ is compact.

Problem (MO)

For which compact covers C of a topological space X the topology of X is generated by a C-parallel metric?

Example

Definition

Let C be a family of closed subsets of a topological space X. A metric d on X is called *C*-parallel if any two sets $A, B \in C$ are parallel with respect to the metric d.

A family C of subsets of X is called a *compact cover* of X if $X = \bigcup C$ and each set $C \in C$ is compact.

Problem (MO)

For which compact covers C of a topological space X the topology of X is generated by a C-parallel metric?

Example

Definition

Let C be a family of closed subsets of a topological space X. A metric d on X is called *C*-parallel if any two sets $A, B \in C$ are parallel with respect to the metric d.

A family C of subsets of X is called a *compact cover* of X if $X = \bigcup C$ and each set $C \in C$ is compact.

Problem (MO)

For which compact covers C of a topological space X the topology of X is generated by a C-parallel metric?

Example

A metric generating the topology of a given topological space is called *admissible*.

Let C be a cover C of a set X. A subset $A \subset X$ is called C-saturated if A coincides with its C-saturation

$$[A]_{\mathcal{C}} := \bigcup \{ C \in \mathcal{C} : A \cap C \neq \emptyset \}.$$

- *lower semicontinuous* if for any open set U ⊂ X its C-saturation [U]_C is open in X;
- upper semicontinuous if for any closed set F ⊂ X its C-saturation [F]_C is closed in X;
- continuous if C is both lower and upper semicontinuous;
- *disjoint* if any distinct sets $A, B \in C$ are disjoint.

A metric generating the topology of a given topological space is called *admissible*.

Let C be a cover C of a set X. A subset $A \subset X$ is called *C*-saturated if A coincides with its *C*-saturation

$$[A]_{\mathcal{C}} := \bigcup \{ C \in \mathcal{C} : A \cap C \neq \emptyset \}.$$

- lower semicontinuous if for any open set U ⊂ X its C-saturation [U]_C is open in X;
- upper semicontinuous if for any closed set F ⊂ X its C-saturation [F]_C is closed in X;
- *continuous* if C is both lower and upper semicontinuous;
- *disjoint* if any distinct sets $A, B \in C$ are disjoint.

A metric generating the topology of a given topological space is called *admissible*.

Let C be a cover C of a set X. A subset $A \subset X$ is called *C*-saturated if A coincides with its *C*-saturation

$$[A]_{\mathcal{C}} := \bigcup \{ C \in \mathcal{C} : A \cap C \neq \emptyset \}.$$

- *lower semicontinuous* if for any open set U ⊂ X its C-saturation [U]_C is open in X;
- upper semicontinuous if for any closed set F ⊂ X its C-saturation [F]_C is closed in X;
- *continuous* if C is both lower and upper semicontinuous;
- *disjoint* if any distinct sets $A, B \in C$ are disjoint.

A metric generating the topology of a given topological space is called *admissible*.

Let C be a cover C of a set X. A subset $A \subset X$ is called *C*-saturated if A coincides with its *C*-saturation

$$[A]_{\mathcal{C}} := \bigcup \{ C \in \mathcal{C} : A \cap C \neq \emptyset \}.$$

- *lower semicontinuous* if for any open set U ⊂ X its C-saturation [U]_C is open in X;
- upper semicontinuous if for any closed set F ⊂ X its C-saturation [F]_C is closed in X;
- continuous if C is both lower and upper semicontinuous;
- *disjoint* if any distinct sets $A, B \in C$ are disjoint.

A metric generating the topology of a given topological space is called *admissible*.

Let C be a cover C of a set X. A subset $A \subset X$ is called *C*-saturated if A coincides with its *C*-saturation

$$[A]_{\mathcal{C}} := \bigcup \{ C \in \mathcal{C} : A \cap C \neq \emptyset \}.$$

- *lower semicontinuous* if for any open set U ⊂ X its C-saturation [U]_C is open in X;
- upper semicontinuous if for any closed set F ⊂ X its C-saturation [F]_C is closed in X;
- *continuous* if C is both lower and upper semicontinuous;
- *disjoint* if any distinct sets $A, B \in C$ are disjoint.

A metric generating the topology of a given topological space is called *admissible*.

Let C be a cover C of a set X. A subset $A \subset X$ is called *C*-saturated if A coincides with its *C*-saturation

$$[A]_{\mathcal{C}} := \bigcup \{ C \in \mathcal{C} : A \cap C \neq \emptyset \}.$$

- *lower semicontinuous* if for any open set U ⊂ X its C-saturation [U]_C is open in X;
- upper semicontinuous if for any closed set F ⊂ X its C-saturation [F]_C is closed in X;
- *continuous* if C is both lower and upper semicontinuous;
- *disjoint* if any distinct sets $A, B \in C$ are disjoint.

Main Theorem

For a compact cover C of a metrizable topological space X the following conditions are equivalent:

- the topology of X is generated by a C-parallel metric;
- 2 the family C is disjoint and continuous.

https://mathoverflow.net/questions/284544/making-compactsubsets-parallel

Main Theorem

For a compact cover C of a metrizable topological space X the following conditions are equivalent:

- the topology of X is generated by a C-parallel metric;
- 2 the family C is disjoint and continuous.

https://mathoverflow.net/questions/284544/making-compact-subsets-parallel

Thank You!

Děkuji!

T.Banakh A Parallel Metrization Theorem

P

< ≣ ► <

æ

'≣ ▶

Thank You!

Děkuji!

T.Banakh A Parallel Metrization Theorem

æ

Э

Main Theorem

For a compact cover C of a metrizable topological space X the following conditions are equivalent:

- the topology of X is generated by a C-parallel metric;
- **2** the family C is disjoint and continuous.

Proof. (1) \Rightarrow (2) Assume that *d* is an admissible *C*-parallel metric on *X*. The disjointness of the cover *C* follows from the obvious observation that two closed parallel sets in a metric space are either disjoint or coincide.

Main Theorem

For a compact cover C of a metrizable topological space X the following conditions are equivalent:

- the topology of X is generated by a C-parallel metric;
- 2 the family C is disjoint and continuous.

Proof. (1) \Rightarrow (2) Assume that *d* is an admissible *C*-parallel metric on *X*. The disjointness of the cover *C* follows from the obvious observation that two closed parallel sets in a metric space are either disjoint or coincide.

Proof of Main Theorem $(1) \Rightarrow (2)$

To see that C is lower semicontinuous, fix any open set $U \subset X$ and consider its C-saturation $[U]_C$. To see that $[U]_C$ is open, take any point $s \in [U]_C$ and find a set $C \in C$ such that $s \in C$ and $C \cap U \neq \emptyset$. Fix a point $u \in U \cap C$ and find $\varepsilon > 0$ such that the ε -ball $B(u,\varepsilon) = \{x \in X : d(x,u) < \varepsilon\}$ is contained in U. We claim that $B(s,\varepsilon) \subset [U]_C$. Indeed, for any $x \in B(s,\varepsilon)$ we can find a set $C_x \in C$ containing x and conclude that $d(C_x, u) = d(C_x, C) \le d(x, s) < \varepsilon$ and hence $C_x \cap U \neq \emptyset$ and $x \in C_x \subset [U]_C$.

To see that \mathcal{F} is lower semicontinuous, fix any closed set $F \subset X$ and consider its C-saturation $[F]_{\mathcal{C}}$. To see that $[F]_{\mathcal{C}}$ is closed, take any point $s \in X \setminus [F]_{\mathcal{C}}$ and find a set $C \in \mathcal{C}$ such that $s \in C$. It follows from $s \notin [F]_{\mathcal{C}}$ that $C \cap F = \emptyset$ and hence $\varepsilon := d(C, F) > 0$ by the compactness of C. We claim that $B(s, \varepsilon) \cap [F]_{\mathcal{C}} = \emptyset$. Assuming the opposite, we can find a point $x \in B(s, \varepsilon) \cap [F]_{\mathcal{C}}$ and a set $C_x \in \mathcal{C}$ such that $x \in C_x$ and $C_x \cap F \neq \emptyset$. Fix a point $z \in C_x \cap F$ and observe that $d(C, F) \leq d(C, z) = d(C, C_x) \leq d(s, x) < \varepsilon = d(C, F)$, which is a desired contradiction.

Proof of Main Theorem $(1) \Rightarrow (2)$

To see that C is lower semicontinuous, fix any open set $U \subset X$ and consider its C-saturation $[U]_C$. To see that $[U]_C$ is open, take any point $s \in [U]_C$ and find a set $C \in C$ such that $s \in C$ and $C \cap U \neq \emptyset$. Fix a point $u \in U \cap C$ and find $\varepsilon > 0$ such that the ε -ball $B(u,\varepsilon) = \{x \in X : d(x, u) < \varepsilon\}$ is contained in U. We claim that $B(s,\varepsilon) \subset [U]_C$. Indeed, for any $x \in B(s,\varepsilon)$ we can find a set $C_x \in C$ containing x and conclude that $d(C_x, u) = d(C_x, C) \leq d(x, s) < \varepsilon$ and hence $C_x \cap U \neq \emptyset$ and $x \in C_x \subset [U]_C$.

To see that \mathcal{F} is lower semicontinuous, fix any closed set $F \subset X$ and consider its C-saturation $[F]_{\mathcal{C}}$. To see that $[F]_{\mathcal{C}}$ is closed, take any point $s \in X \setminus [F]_{\mathcal{C}}$ and find a set $C \in \mathcal{C}$ such that $s \in C$. It follows from $s \notin [F]_{\mathcal{C}}$ that $C \cap F = \emptyset$ and hence $\varepsilon := d(C, F) > 0$ by the compactness of C. We claim that $B(s, \varepsilon) \cap [F]_{\mathcal{C}} = \emptyset$. Assuming the opposite, we can find a point $x \in B(s, \varepsilon) \cap [F]_{\mathcal{C}}$ and a set $C_x \in \mathcal{C}$ such that $x \in C_x$ and $C_x \cap F \neq \emptyset$. Fix a point $z \in C_x \cap F$ and observe that $d(C, F) \leq d(C, z) = d(C, C_x) \leq d(s, x) < \varepsilon = d(C, F)$, which is a desired contradiction.

∃ ► < ∃ ►</p>

Assume that C is disjoint and continuous.

Fix any admissible metric $\rho \leq 1$ on X.

Let $\mathcal{U}_0(\mathcal{C}) = \{X\}$ for every $\mathcal{C} \in \mathcal{C}$.

Claim

For every $n \in \mathbb{N}$ and every $C \in C$ there exists a finite cover $\mathcal{U}_n(C)$ of C by open subsets of X such that

(i) each set $U \in U_n(C)$ has ρ -diameter $\leq \frac{1}{2^n}$;

Assume that $\ensuremath{\mathcal{C}}$ is disjoint and continuous.

Fix any admissible metric $\rho \leq 1$ on X. Let $\mathcal{U}_0(C) = \{X\}$ for every $C \in C$.

Claim

For every $n \in \mathbb{N}$ and every $C \in C$ there exists a finite cover $\mathcal{U}_n(C)$ of C by open subsets of X such that

(i) each set $U \in U_n(C)$ has ρ -diameter $\leq \frac{1}{2^n}$;

Assume that $\ensuremath{\mathcal{C}}$ is disjoint and continuous.

Fix any admissible metric $\rho \leq 1$ on X.

Let $\mathcal{U}_0(C) = \{X\}$ for every $C \in \mathcal{C}$.

Claim

For every $n \in \mathbb{N}$ and every $C \in C$ there exists a finite cover $\mathcal{U}_n(C)$ of C by open subsets of X such that

(i) each set $U \in U_n(C)$ has ρ -diameter $\leq \frac{1}{2^n}$;

Assume that $\ensuremath{\mathcal{C}}$ is disjoint and continuous.

Fix any admissible metric $\rho \leq 1$ on X.

Let $\mathcal{U}_0(C) = \{X\}$ for every $C \in \mathcal{C}$.

Claim

For every $n \in \mathbb{N}$ and every $C \in C$ there exists a finite cover $\mathcal{U}_n(C)$ of C by open subsets of X such that

(i) each set $U \in U_n(C)$ has ρ -diameter $\leq \frac{1}{2^n}$;

Assume that \mathcal{C} is disjoint and continuous.

Fix any admissible metric $\rho \leq 1$ on X.

Let $\mathcal{U}_0(C) = \{X\}$ for every $C \in \mathcal{C}$.

Claim

For every $n \in \mathbb{N}$ and every $C \in C$ there exists a finite cover $\mathcal{U}_n(C)$ of C by open subsets of X such that

(i) each set $U \in U_n(C)$ has ρ -diameter $\leq \frac{1}{2^n}$;

Assume that $\ensuremath{\mathcal{C}}$ is disjoint and continuous.

Fix any admissible metric $\rho \leq 1$ on X.

Let $\mathcal{U}_0(C) = \{X\}$ for every $C \in \mathcal{C}$.

Claim

For every $n \in \mathbb{N}$ and every $C \in C$ there exists a finite cover $\mathcal{U}_n(C)$ of C by open subsets of X such that

(i) each set $U \in U_n(C)$ has ρ -diameter $\leq \frac{1}{2^n}$;

For every compact set $C \in C$ consider the finite subfamily $\mathcal{V}(C) := \{ V \in \mathcal{V} : V \cap C \neq \emptyset \}$ of the locally finite cover \mathcal{V} .

Since the cover C is upper semicontinuous, the C-saturated set $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$ is closed and disjoint with the set C.

Since C is lower semi-continuous, for any open set $V \in \mathcal{V}(C)$ the set $[V]_{\mathcal{C}}$ is open and hence $W[C] := \bigcap_{V \in \mathcal{V}(C)} [V]_{\mathcal{C}} \setminus F_{\mathcal{C}}$ is an open C-saturated neighborhood of C in X.

Put $U_n(C) := \{W(C) \cap V : V \in V(C)\}$ and observe that U_n satisfies the condition

For every compact set $C \in C$ consider the finite subfamily $\mathcal{V}(C) := \{ V \in \mathcal{V} : V \cap C \neq \emptyset \}$ of the locally finite cover \mathcal{V} .

Since the cover C is upper semicontinuous, the C-saturated set $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$ is closed and disjoint with the set C.

Since C is lower semi-continuous, for any open set $V \in \mathcal{V}(C)$ the set $[V]_{\mathcal{C}}$ is open and hence $W[C] := \bigcap_{V \in \mathcal{V}(C)} [V]_{\mathcal{C}} \setminus F_{\mathcal{C}}$ is an open C-saturated neighborhood of C in X.

Put $U_n(C) := \{W(C) \cap V : V \in V(C)\}$ and observe that U_n satisfies the condition

For every compact set $C \in C$ consider the finite subfamily $\mathcal{V}(C) := \{ V \in \mathcal{V} : V \cap C \neq \emptyset \}$ of the locally finite cover \mathcal{V} .

Since the cover C is upper semicontinuous, the C-saturated set $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$ is closed and disjoint with the set C.

Since C is lower semi-continuous, for any open set $V \in \mathcal{V}(C)$ the set $[V]_{\mathcal{C}}$ is open and hence $W[C] := \bigcap_{V \in \mathcal{V}(C)} [V]_{\mathcal{C}} \setminus F_{C}$ is an open C-saturated neighborhood of C in X.

Put $U_n(C) := \{W(C) \cap V : V \in V(C)\}$ and observe that U_n satisfies the condition

For every compact set $C \in C$ consider the finite subfamily $\mathcal{V}(C) := \{ V \in \mathcal{V} : V \cap C \neq \emptyset \}$ of the locally finite cover \mathcal{V} .

Since the cover C is upper semicontinuous, the C-saturated set $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$ is closed and disjoint with the set C.

Since C is lower semi-continuous, for any open set $V \in \mathcal{V}(C)$ the set $[V]_{\mathcal{C}}$ is open and hence $W[C] := \bigcap_{V \in \mathcal{V}(C)} [V]_{\mathcal{C}} \setminus F_C$ is an open C-saturated neighborhood of C in X.

Put $U_n(C) := \{W(C) \cap V : V \in V(C)\}$ and observe that U_n satisfies the condition

For every compact set $C \in C$ consider the finite subfamily $\mathcal{V}(C) := \{ V \in \mathcal{V} : V \cap C \neq \emptyset \}$ of the locally finite cover \mathcal{V} .

Since the cover C is upper semicontinuous, the C-saturated set $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$ is closed and disjoint with the set C.

Since C is lower semi-continuous, for any open set $V \in \mathcal{V}(C)$ the set $[V]_{\mathcal{C}}$ is open and hence $W[C] := \bigcap_{V \in \mathcal{V}(C)} [V]_{\mathcal{C}} \setminus F_{C}$ is an open C-saturated neighborhood of C in X.

Put $U_n(C) := \{W(C) \cap V : V \in V(C)\}$ and observe that U_n satisfies the condition

Proof of the Claim (continuation)

Let us show that the cover $U_n(C)$ satisfies the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

Assume that a set $A \in C$ meets some set $U \in U_n(C)$. First we show that $A \subset \bigcup U_n(C)$.

Find a set $V \in \mathcal{V}(C)$ such that $U = W(C) \cap V$.

It follows from $\emptyset \neq A \cap U \subset A \cap W(C)$ that the set A meets W(C) and hence is contained in W(C) and is disjoint with $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$. Hence

 $A \subset W(C) \cap (\bigcup \mathcal{V}(C)) = \bigcup_{V \in \mathcal{V}(C)} W(C) \cap V = \bigcup \mathcal{U}_n(C).$

Next, take any set $U' \in U_n(C)$ and find a set $V' \in \mathcal{V}(C)$ with $U' = W(C) \cap V'$. The (in)equality $A \cap W(C) \cap V = A \cap U \neq \emptyset$ and the definition of the set $W(C) \supset A$ implies that A intersects $V' \in \mathcal{V}(C)$ and hence intersects $U' = W(C) \cap V'$. This completes the proof of Claim.

Proof of the Claim (continuation)

Let us show that the cover $U_n(C)$ satisfies the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

Assume that a set $A \in C$ meets some set $U \in U_n(C)$.

First we show that $A \subset \bigcup \mathcal{U}_n(C)$.

Find a set $V \in \mathcal{V}(C)$ such that $U = W(C) \cap V$.

It follows from $\emptyset \neq A \cap U \subset A \cap W(C)$ that the set A meets W(C) and hence is contained in W(C) and is disjoint with $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$. Hence

 $A \subset W(C) \cap (\bigcup \mathcal{V}(C)) = \bigcup_{V \in \mathcal{V}(C)} W(C) \cap V = \bigcup \mathcal{U}_n(C).$

Next, take any set $U' \in U_n(C)$ and find a set $V' \in \mathcal{V}(C)$ with $U' = W(C) \cap V'$. The (in)equality $A \cap W(C) \cap V = A \cap U \neq \emptyset$ and the definition of the set $W(C) \supset A$ implies that A intersects $V' \in \mathcal{V}(C)$ and hence intersects $U' = W(C) \cap V'$. This completes the proof of Claim.

Let us show that the cover $U_n(C)$ satisfies the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

Assume that a set $A \in C$ meets some set $U \in U_n(C)$. First we show that $A \subset \bigcup U_n(C)$.

Find a set $V \in \mathcal{V}(C)$ such that $U = W(C) \cap V$.

It follows from $\emptyset \neq A \cap U \subset A \cap W(C)$ that the set A meets W(C) and hence is contained in W(C) and is disjoint with $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$. Hence

 $A \subset W(C) \cap (\bigcup \mathcal{V}(C)) = \bigcup_{V \in \mathcal{V}(C)} W(C) \cap V = \bigcup \mathcal{U}_n(C).$

Next, take any set $U' \in U_n(C)$ and find a set $V' \in \mathcal{V}(C)$ with $U' = W(C) \cap V'$. The (in)equality $A \cap W(C) \cap V = A \cap U \neq \emptyset$ and the definition of the set $W(C) \supset A$ implies that A intersects $V' \in \mathcal{V}(C)$ and hence intersects $U' = W(C) \cap V'$. This completes the proof of Claim.

Let us show that the cover $U_n(C)$ satisfies the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

Assume that a set $A \in C$ meets some set $U \in U_n(C)$.

First we show that $A \subset \bigcup \mathcal{U}_n(C)$.

Find a set $V \in \mathcal{V}(C)$ such that $U = W(C) \cap V$.

It follows from $\emptyset \neq A \cap U \subset A \cap W(C)$ that the set A meets W(C) and hence is contained in W(C) and is disjoint with $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$. Hence

 $A \subset W(C) \cap (\bigcup \mathcal{V}(C)) = \bigcup_{V \in \mathcal{V}(C)} W(C) \cap V = \bigcup \mathcal{U}_n(C).$

Next, take any set $U' \in U_n(C)$ and find a set $V' \in V(C)$ with $U' = W(C) \cap V'$. The (in)equality $A \cap W(C) \cap V = A \cap U \neq \emptyset$ and the definition of the set $W(C) \supset A$ implies that A intersects $V' \in V(C)$ and hence intersects $U' = W(C) \cap V'$. This completes the proof of Claim.

Let us show that the cover $U_n(C)$ satisfies the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

Assume that a set $A \in C$ meets some set $U \in U_n(C)$.

First we show that $A \subset \bigcup \mathcal{U}_n(C)$.

Find a set $V \in \mathcal{V}(C)$ such that $U = W(C) \cap V$.

It follows from $\emptyset \neq A \cap U \subset A \cap W(C)$ that the set A meets W(C) and hence is contained in W(C) and is disjoint with $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$. Hence

 $A \subset W(C) \cap (\bigcup \mathcal{V}(C)) = \bigcup_{V \in \mathcal{V}(C)} W(C) \cap V = \bigcup \mathcal{U}_n(C).$

Next, take any set $U' \in U_n(C)$ and find a set $V' \in \mathcal{V}(C)$ with $U' = W(C) \cap V'$. The (in)equality $A \cap W(C) \cap V = A \cap U \neq \emptyset$ and the definition of the set $W(C) \supset A$ implies that A intersects $V' \in \mathcal{V}(C)$ and hence intersects $U' = W(C) \cap V'$. This completes the proof of Claim.

Let us show that the cover $U_n(C)$ satisfies the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

Assume that a set $A \in C$ meets some set $U \in U_n(C)$.

First we show that $A \subset \bigcup U_n(C)$.

Find a set $V \in \mathcal{V}(C)$ such that $U = W(C) \cap V$.

It follows from $\emptyset \neq A \cap U \subset A \cap W(C)$ that the set A meets W(C) and hence is contained in W(C) and is disjoint with $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$. Hence

 $A \subset W(C) \cap (\bigcup \mathcal{V}(C)) = \bigcup_{V \in \mathcal{V}(C)} W(C) \cap V = \bigcup \mathcal{U}_n(C).$

Next, take any set $U' \in U_n(C)$ and find a set $V' \in V(C)$ with $U' = W(C) \cap V'$. The (in)equality $A \cap W(C) \cap V = A \cap U \neq \emptyset$ and the definition of the set $W(C) \supset A$ implies that A intersects $V' \in V(C)$ and hence intersects $U' = W(C) \cap V'$. This completes the proof of Claim.

Let us show that the cover $U_n(C)$ satisfies the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

Assume that a set $A \in C$ meets some set $U \in U_n(C)$.

First we show that $A \subset \bigcup U_n(C)$.

Find a set $V \in \mathcal{V}(C)$ such that $U = W(C) \cap V$.

It follows from $\emptyset \neq A \cap U \subset A \cap W(C)$ that the set A meets W(C) and hence is contained in W(C) and is disjoint with $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$. Hence

 $A \subset W(C) \cap (\bigcup \mathcal{V}(C)) = \bigcup_{V \in \mathcal{V}(C)} W(C) \cap V = \bigcup \mathcal{U}_n(C).$

Next, take any set $U' \in U_n(C)$ and find a set $V' \in V(C)$ with $U' = W(C) \cap V'$. The (in)equality $A \cap W(C) \cap V = A \cap U \neq \emptyset$ and the definition of the set $W(C) \supset A$ implies that A intersects $V' \in V(C)$ and hence intersects $U' = W(C) \cap V'$. This completes the proof of Claim.

Let us show that the cover $U_n(C)$ satisfies the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

Assume that a set $A \in C$ meets some set $U \in U_n(C)$.

First we show that $A \subset \bigcup U_n(C)$.

Find a set $V \in \mathcal{V}(C)$ such that $U = W(C) \cap V$.

It follows from $\emptyset \neq A \cap U \subset A \cap W(C)$ that the set A meets W(C) and hence is contained in W(C) and is disjoint with $F_C = [X \setminus \bigcup \mathcal{V}(C)]_C$. Hence

 $A \subset W(C) \cap (\bigcup \mathcal{V}(C)) = \bigcup_{V \in \mathcal{V}(C)} W(C) \cap V = \bigcup \mathcal{U}_n(C).$

Next, take any set $U' \in U_n(C)$ and find a set $V' \in \mathcal{V}(C)$ with $U' = W(C) \cap V'$. The (in)equality $A \cap W(C) \cap V = A \cap U \neq \emptyset$ and the definition of the set $W(C) \supset A$ implies that A intersects $V' \in \mathcal{V}(C)$ and hence intersects $U' = W(C) \cap V'$. This completes the proof of Claim.

Given two points $x, y \in X$ let

 $\delta(x,y) := \inf \left\{ \frac{1}{2^n} : \exists C \in \mathcal{C} \text{ and } U \in \mathcal{U}_n(C) \text{ such that } (x,y) \in U \right\}.$

Adjust the function δ to a pseudometric d letting

$$d(x,y) = \inf \sum_{i=1}^{m} \delta(x_{i-1}, x_i)$$

where the infimum is taken over all sequences $x = x_0, \ldots, x_m = y$. The condition (i) of Claim implies that $\rho(x, y) \leq \delta(x, y)$ and hence $\rho(x, y) \leq d(x, y)$ for any $x, y \in X$. So, the pseudometric d is a metric on X such that the identity map $(X, d) \rightarrow (X, \rho)$ is continuous. To see that this map is a homeomorphism, take any point $x \in X$ and $\varepsilon > 0$. Find $n \in \mathbb{N}$ such that $\frac{1}{2^n} < \varepsilon$ and choose a set $C \in C$ with $x \in C$ and a set $U \in \mathcal{U}_n(C)$ with $x \in U$.

Then for any $y \in U$ we get $d(y, x) \leq \delta(x, y) \leq \frac{1}{2^n} < \varepsilon$, which means that the map $X \to (X, d)$ is continuous to $A = \{x, y\}$.

Given two points $x, y \in X$ let $\delta(x, y) := \inf \left\{ \frac{1}{2^n} : \exists C \in C \text{ and } U \in \mathcal{U}_n(C) \text{ such that } (x, y) \in U \right\}.$ Adjust the function δ to a pseudometric d letting

 $d(x,y) = \inf \sum_{i=1}^{m} \delta(x_{i-1},x_i)$

where the infimum is taken over all sequences $x = x_0, \ldots, x_m = y$.

The condition (i) of Claim implies that $\rho(x, y) \leq \delta(x, y)$ and hence $\rho(x, y) \leq d(x, y)$ for any $x, y \in X$. So, the pseudometric d is a metric on X such that the identity map $(X, d) \rightarrow (X, \rho)$ is continuous. To see that this map is a homeomorphism, take any point $x \in X$ and $\varepsilon > 0$. Find $n \in \mathbb{N}$ such that $\frac{1}{2^n} < \varepsilon$ and choose a set $C \in C$ with $x \in C$ and a set $U \in \mathcal{U}_n(C)$ with $x \in U$.

Then for any $y \in U$ we get $d(y,x) \leq \delta(x,y) \leq \frac{1}{2^n} < \varepsilon$, which means that the map $X \to (X,d)$ is continuous , $z \to z \in z$.

Given two points $x, y \in X$ let $\delta(x, y) := \inf \left\{ \frac{1}{2^n} : \exists C \in C \text{ and } U \in \mathcal{U}_n(C) \text{ such that } (x, y) \in U \right\}.$ Adjust the function δ to a pseudometric d letting

$$d(x,y) = \inf \sum_{i=1}^{m} \delta(x_{i-1},x_i)$$

where the infimum is taken over all sequences $x = x_0, \ldots, x_m = y$. The condition (i) of Claim implies that $\rho(x, y) \leq \delta(x, y)$ and hence $\rho(x, y) \leq d(x, y)$ for any $x, y \in X$. So, the pseudometric d is a metric on X such that the identity map $(X, d) \rightarrow (X, \rho)$ is continuous. To see that this map is a homeomorphism, take any point $x \in X$ and $\varepsilon > 0$. Find $n \in \mathbb{N}$ such that $\frac{1}{2^n} < \varepsilon$ and choose a set $C \in C$ with $x \in C$ and a set $U \in U_n(C)$ with $x \in U$. Then for any $y \in U$ we get $d(y, x) \leq \delta(x, y) \leq \frac{1}{2^n} < \varepsilon$, which means that the map $X \rightarrow (X, d)$ is continuous.

Given two points $x, y \in X$ let $\delta(x, y) := \inf \left\{ \frac{1}{2^n} : \exists C \in C \text{ and } U \in \mathcal{U}_n(C) \text{ such that } (x, y) \in U \right\}.$ Adjust the function δ to a pseudometric d letting

$$d(x,y) = \inf \sum_{i=1}^{m} \delta(x_{i-1},x_i)$$

where the infimum is taken over all sequences $x = x_0, \ldots, x_m = y$. The condition (i) of Claim implies that $\rho(x, y) \leq \delta(x, y)$ and hence $\rho(x, y) \leq d(x, y)$ for any $x, y \in X$. So, the pseudometric d is a metric on X such that the identity map $(X, d) \rightarrow (X, \rho)$ is continuous. To see that this map is a homeomorphism, take any point $x \in X$ and $\varepsilon > 0$. Find $n \in \mathbb{N}$ such that $\frac{1}{2^n} < \varepsilon$ and choose a set $C \in C$ with $x \in C$ and a set $U \in \mathcal{U}_n(C)$ with $x \in U$. Then for any $y \in U$ we get $d(y, x) \leq \delta(x, y) \leq \frac{1}{2^n} < \varepsilon$, which means that the map $X \rightarrow (X, d)$ is continuous.

Given two points $x, y \in X$ let $\delta(x, y) := \inf \left\{ \frac{1}{2^n} : \exists C \in C \text{ and } U \in \mathcal{U}_n(C) \text{ such that } (x, y) \in U \right\}.$ Adjust the function δ to a pseudometric d letting

$$d(x,y) = \inf \sum_{i=1}^{m} \delta(x_{i-1},x_i)$$

where the infimum is taken over all sequences $x = x_0, \ldots, x_m = y$. The condition (i) of Claim implies that $\rho(x, y) \leq \delta(x, y)$ and hence $\rho(x, y) \leq d(x, y)$ for any $x, y \in X$. So, the pseudometric d is a metric on X such that the identity map $(X, d) \rightarrow (X, \rho)$ is continuous. To see that this map is a homeomorphism, take any point $x \in X$ and $\varepsilon > 0$. Find $n \in \mathbb{N}$ such that $\frac{1}{2^n} < \varepsilon$ and choose a set $C \in C$ with $x \in C$ and a set $U \in \mathcal{U}_n(C)$ with $x \in U$.

Then for any $y \in U$ we get $d(y,x) \leq \delta(x,y) \leq \frac{1}{2^n} < \varepsilon$, which means that the map $X \to (X,d)$ is continuous to A = A = A.

Given two points $x, y \in X$ let $\delta(x, y) := \inf \left\{ \frac{1}{2^n} : \exists C \in C \text{ and } U \in \mathcal{U}_n(C) \text{ such that } (x, y) \in U \right\}.$ Adjust the function δ to a pseudometric d letting

$$d(x,y) = \inf \sum_{i=1}^{m} \delta(x_{i-1},x_i)$$

where the infimum is taken over all sequences $x = x_0, \ldots, x_m = y$. The condition (i) of Claim implies that $\rho(x, y) \leq \delta(x, y)$ and hence $\rho(x, y) \leq d(x, y)$ for any $x, y \in X$. So, the pseudometric d is a metric on X such that the identity map $(X, d) \rightarrow (X, \rho)$ is continuous. To see that this map is a homeomorphism, take any point $x \in X$ and $\varepsilon > 0$. Find $n \in \mathbb{N}$ such that $\frac{1}{2^n} < \varepsilon$ and choose a set $C \in C$ with $x \in C$ and a set $U \in \mathcal{U}_n(C)$ with $x \in U$. Then for any $y \in U$ we get $d(y, x) \leq \delta(x, y) \leq \frac{1}{2^n} < \varepsilon$, which

means that the map X o (X, d) is continuous.

We claim that the metric d is C-parallel.

Given two distinct compact sets $A, B \in C$, we need to show that d(a, B) = d(A, B) = d(A, b) for any $a \in A$, $b \in B$.

Assuming that this inequality is not true, we conclude that either

d(a,B) > d(A,B) > 0 or d(A,b) > d(A,B) > 0

for some $a \in A$ and $b \in B$.

First assume that d(a, B) > d(A, B) for some $a \in A$. Choose points $a' \in A$, $b' \in B'$ such that d(a', b') = d(A, B) < d(a, B). By the definition of the distance d(a', b') < d(a, B), there exists a chain $a' = x'_0, x'_1, \dots, x'_m = b'$ such that

 $\sum_{i=1}^{m} \delta(x'_{i-1}, x'_i) < d(a, B).$

We claim that the metric d is C-parallel.

Given two distinct compact sets $A, B \in C$, we need to show that d(a, B) = d(A, B) = d(A, b) for any $a \in A$, $b \in B$.

Assuming that this inequality is not true, we conclude that either d(a, B) > d(A, B) > 0 or d(A, b) > d(A, B) > 0

for some $a \in A$ and $b \in B$.

First assume that d(a, B) > d(A, B) for some $a \in A$. Choose points $a' \in A$, $b' \in B'$ such that d(a', b') = d(A, B) < d(a, B). By the definition of the distance d(a', b') < d(a, B), there exists a chain $a' = x'_0, x'_1, \dots, x'_m = b'$ such that $\sum_{i=1}^m \delta(x'_i - x'_i) < d(a, B)$

We claim that the metric d is C-parallel.

Given two distinct compact sets $A, B \in C$, we need to show that d(a, B) = d(A, B) = d(A, b) for any $a \in A$, $b \in B$.

Assuming that this inequality is not true, we conclude that either

d(a, B) > d(A, B) > 0 or d(A, b) > d(A, B) > 0

for some $a \in A$ and $b \in B$.

First assume that d(a, B) > d(A, B) for some $a \in A$. Choose points $a' \in A$, $b' \in B'$ such that d(a', b') = d(A, B) < d(a, B). By the definition of the distance d(a', b') < d(a, B), there exists a chain $a' = x'_0, x'_1, \dots, x'_m = b'$ such that $\sum_{i=1}^m \delta(x'_{i-1}, x'_i) < d(a, B)$.

We claim that the metric d is C-parallel.

Given two distinct compact sets $A, B \in C$, we need to show that d(a, B) = d(A, B) = d(A, b) for any $a \in A$, $b \in B$.

Assuming that this inequality is not true, we conclude that either

$$d(a,B) > d(A,B) > 0$$
 or $d(A,b) > d(A,B) > 0$

for some $a \in A$ and $b \in B$.

First assume that d(a, B) > d(A, B) for some $a \in A$. Choose points $a' \in A$, $b' \in B'$ such that d(a', b') = d(A, B) < d(a, B). By the definition of the distance d(a', b') < d(a, B), there exists a chain $a' = x'_0, x'_1, \dots, x'_m = b'$ such that $\sum_{i=1}^m \delta(x'_{i-1}, x'_i) < d(a, B)$.

We claim that the metric d is C-parallel.

Given two distinct compact sets $A, B \in C$, we need to show that d(a, B) = d(A, B) = d(A, b) for any $a \in A$, $b \in B$.

Assuming that this inequality is not true, we conclude that either

$$d(a, B) > d(A, B) > 0$$
 or $d(A, b) > d(A, B) > 0$

for some $a \in A$ and $b \in B$.

First assume that d(a, B) > d(A, B) for some $a \in A$. Choose points $a' \in A$, $b' \in B'$ such that d(a', b') = d(A, B) < d(a, B).

By the definition of the distance d(a', b') < d(a, B), there exists a chain $a' = x'_0, x'_1, \dots, x'_m = b'$ such that $\sum_{i=1}^m \delta(x'_{i-1}, x'_i) < d(a, B).$

We claim that the metric d is C-parallel.

Given two distinct compact sets $A, B \in C$, we need to show that d(a, B) = d(A, B) = d(A, b) for any $a \in A$, $b \in B$.

Assuming that this inequality is not true, we conclude that either

$$d(a, B) > d(A, B) > 0$$
 or $d(A, b) > d(A, B) > 0$

for some $a \in A$ and $b \in B$.

First assume that d(a, B) > d(A, B) for some $a \in A$. Choose points $a' \in A$, $b' \in B'$ such that d(a', b') = d(A, B) < d(a, B). By the definition of the distance d(a', b') < d(a, B), there exists a chain $a' = x'_0, x'_1, \dots, x'_m = b'$ such that

 $\sum_{i=1}^{m} \delta(x'_{i-1}, x'_i) < d(a, B).$

We claim that the metric d is C-parallel.

Given two distinct compact sets $A, B \in C$, we need to show that d(a, B) = d(A, B) = d(A, b) for any $a \in A$, $b \in B$.

Assuming that this inequality is not true, we conclude that either

$$d(a, B) > d(A, B) > 0$$
 or $d(A, b) > d(A, B) > 0$

for some $a \in A$ and $b \in B$.

First assume that d(a, B) > d(A, B) for some $a \in A$. Choose points $a' \in A$, $b' \in B'$ such that d(a', b') = d(A, B) < d(a, B).

By the definition of the distance d(a', b') < d(a, B), there exists a chain $a' = x'_0, x'_1, \dots, x'_m = b'$ such that $\sum_{i=1}^m \delta(x'_{i-1}, x'_i) < d(a, B).$

We claim that the metric d is C-parallel.

Given two distinct compact sets $A, B \in C$, we need to show that d(a, B) = d(A, B) = d(A, b) for any $a \in A$, $b \in B$.

Assuming that this inequality is not true, we conclude that either

$$d(a, B) > d(A, B) > 0$$
 or $d(A, b) > d(A, B) > 0$

for some $a \in A$ and $b \in B$.

First assume that d(a, B) > d(A, B) for some $a \in A$. Choose points $a' \in A$, $b' \in B'$ such that d(a', b') = d(A, B) < d(a, B).

By the definition of the distance d(a', b') < d(a, B), there exists a chain $a' = x'_0, x'_1, \dots, x'_m = b'$ such that $\sum_{i=1}^m \delta(x'_{i-1}, x'_i) < d(a, B).$

Using the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

of Claim, we can inductively construct a sequence of points $a = x_0, x_1, \ldots, x_m$ such that for every positive $i \leq m$ the point x_i belongs to A_i and the points x_{i-1}, x_i belong to some set $U_i \in U_{n_i}(C_i)$. Then $x_m \in A_m = B$.

The chain $a = x_0, x_1, \ldots, x_m$ witnesses that

$$d(a,B) \leq d(a,x_m) \leq \sum_{i=1}^m \delta(x_{i-1},x_i) \leq \sum_{i=1}^m \frac{1}{2^{n_i}} = \sum_{i=1}^m \delta(x'_{i-1},x'_i) < d(a,B),$$

which is a desired contradiction.

By analogy we can prove that the case d(A, B) < d(A, b) leads to a contradiction.

Using the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

of Claim, we can inductively construct a sequence of points $a = x_0, x_1, \ldots, x_m$ such that for every positive $i \leq m$ the point x_i belongs to A_i and the points x_{i-1}, x_i belong to some set $U_i \in U_{n_i}(C_i)$. Then $x_m \in A_m = B$.

The chain $a = x_0, x_1, \ldots, x_m$ witnesses that

$$d(a,B) \leq d(a,x_m) \leq \sum_{i=1}^m \delta(x_{i-1},x_i) \leq \sum_{i=1}^m \frac{1}{2^{n_i}} = \sum_{i=1}^m \delta(x'_{i-1},x'_i) < d(a,B),$$

which is a desired contradiction.

By analogy we can prove that the case d(A, B) < d(A, b) leads to a contradiction.

Using the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

of Claim, we can inductively construct a sequence of points $a = x_0, x_1, \ldots, x_m$ such that for every positive $i \leq m$ the point x_i belongs to A_i and the points x_{i-1}, x_i belong to some set $U_i \in U_{n_i}(C_i)$. Then $x_m \in A_m = B$.

The chain $a = x_0, x_1, \ldots, x_m$ witnesses that

$$d(a,B) \leq d(a,x_m) \leq \sum_{i=1}^m \delta(x_{i-1},x_i) \leq \sum_{i=1}^m \frac{1}{2^{n_i}} = \sum_{i=1}^m \delta(x'_{i-1},x'_i) < d(a,B),$$

which is a desired contradiction.

By analogy we can prove that the case d(A,B) < d(A,b) leads to a contradiction.

Using the condition

(ii) if a set $A \in C$ meets some set $U \in U_n(C)$, then $A \subset \bigcup U_n(C)$ and A meets each set $U' \in U_n(C)$.

of Claim, we can inductively construct a sequence of points $a = x_0, x_1, \ldots, x_m$ such that for every positive $i \leq m$ the point x_i belongs to A_i and the points x_{i-1}, x_i belong to some set $U_i \in U_{n_i}(C_i)$. Then $x_m \in A_m = B$.

The chain $a = x_0, x_1, \ldots, x_m$ witnesses that

$$d(a,B) \leq d(a,x_m) \leq \sum_{i=1}^m \delta(x_{i-1},x_i) \leq \sum_{i=1}^m \frac{1}{2^{n_i}} = \sum_{i=1}^m \delta(x'_{i-1},x'_i) < d(a,B),$$

which is a desired contradiction.

By analogy we can prove that the case d(A, B) < d(A, b) leads to a contradiction.

Thank You!

Děkuji!

T.Banakh A Parallel Metrization Theorem

P

< ≣ ► <

æ

'≣ ▶

Thank You!

Děkuji!

T.Banakh A Parallel Metrization Theorem

æ

Э